Bocas grandes sobre Big Data

Neste post o Stephen Few (aos moldes do que vem fazendo o Nassim Taleb) vai desmascarando a grande falácia que é o Big Data nos dias atuais.

Esse trecho é simplesmente destruidor:

Dr. Hidalgo,

Your response regarding the definition of Big Data demonstrates the problem that I’m trying to expose: Big Data has not been defined in a manner that lends itself to intelligent discussion. Your definition does not at all represent a generally accepted definition of Big Data. It is possible that the naysayers with whom you disagree define Big Data differently than you do. I’ve observed a great many false promises and much wasted effort in the name of Big Data. Unless you’re involved with a broad audience of people who work with data in organizations of all sorts (not just academia), you might not be aware of some of the problems that exist with Big Data.

Your working definition of Big Data is somewhat similar to the popular definition involving the 3 Vs (volume, velocity, and variety) that is often cited. The problem with the 3 Vs and your “size, resolution, and scope” definition is that they define Big Data in a way that could be applied to the data that I worked with when I began my career 30 years ago. Back then I routinely worked with data that was big in size (a.k.a., volume), detailed in resolution, and useful for purposes other than that for which it was originally generated. By defining Big Data as you have, you are supporting the case that I’ve been making for years that Big Data has always existed and therefore doesn’t deserve a new name.

I don’t agree that the term Big Data emerged as a “way to refer to digital traces of human activity that were collected for operational purposes by service providers serving large populations, and that could be used for purposes that were beyond those for which the data was originally collected.” What you’ve described has been going on for many years. In the past we called it data, with no need for the new term “Big Data.” What I’ve observed is that the term Big Data emerged as a marketing campaign by technology vendors and those who support them (e.g., large analyst firms such as Gartner) to promote sales. Every few years vendors come up with a new name for the same thing. Thirty years ago, we called it decision support. Not long after that we called it data warehousing. Later, the term business intelligence came into vogue. Since then we’ve been subjected to marketing campaigns associated with analytics and data science. These campaigns keep organizations chasing the latest technologies, believing that they’re new and necessary, which is rarely the case. All the while, they never slow down long enough to develop the basic skills of data sensemaking.

When you talk about data visualization, you’re venturing into territory that I know well. It is definitely not true that data visualization has “progressed enormously during recent years.” As a leading practitioner in the field, I am painfully aware that progress in data visualization has been slow and, in actual practice, is taking two steps backwards, repeating past mistakes, for every useful step forwards.

What various people and organizations value from data certainly differs, as you’ve said. The question that I asked, however, is whether or not the means of gleaning value from data, regardless of what we deem valuable, are significantly different from the past. I believe that the answer is “No.” While it is true that we are always making gradual progress in the development of analytical techniques and technologies, what we do today is largely the same as what we did when I first began my work in the field 30 years ago. Little has changed, and what has changed is an extension of the past, not a revolutionary or qualitative departure.