Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

Abstract We develop an algorithm which exceeds the performance of board certified cardiologists in detecting a wide range of heart arrhythmias from electrocardiograms recorded with a single-lead wearable monitor. We build a dataset with more than 500 times the number of unique patients than previously studied corpora. On this dataset, we train a 34-layer convolutional neural network which maps a sequence of ECG samples to a sequence of rhythm classes. Committees of boardcertified cardiologists annotate a gold standard test set on which we compare the performance of our model to that of 6 other individual cardiologists. We exceed the average cardiologist performance in both recall (sensitivity) and precision (positive predictive value).

Conclusion We develop a model which exceeds the cardiologist performance in detecting a wide range of heart arrhythmias from single-lead ECG records. Key to the performance of the model is a large annotated dataset and a very deep convolutional network which can map a sequence of ECG samples to a sequence of arrhythmia annotations. On the clinical side, future work should investigate extending the set of arrhythmias and other forms of heart disease which can be automatically detected with high-accuracy from single or multiple lead ECG records. For example we do not detect Ventricular Flutter or Fibrillation. We also do not detect Left or Right Ventricular Hypertrophy, Myocardial Infarction or a number of other heart diseases which do not necessarily exhibit as arrhythmias. Some of these may be difficult or even impossible to detect on a single-lead ECG but can often be seen on a multiple-lead ECG. Given that more than 300 million ECGs are recorded annually, high-accuracy diagnosis from ECG can save expert clinicians and cardiologists considerable time and decrease the number of misdiagnoses. Furthermore, we hope that this technology coupled with low-cost ECG devices enables more widespread use of the ECG as a diagnostic tool in places where access to a cardiologist is difficult.