Como um agricultor do Japão está usando Deep Learning para seleção de pepinos
2016 Dec 21[…]Here’s a systems diagram of the cucumber sorter that Makoto built. The system uses Raspberry Pi 3 as the main controller to take images of the cucumbers with a camera, and in a first phase, runs a small-scale neural network on TensorFlow to detect whether or not the image is of a cucumber. It then forwards the image to a larger TensorFlow neural network running on a Linux server to perform a more detailed classification.
Makoto used the sample TensorFlow code Deep MNIST for Experts with minor modifications to the convolution, pooling and last layers, changing the network design to adapt to the pixel format of cucumber images and the number of cucumber classes.[…]
[…]One of the current challenges with deep learning is that you need to have a large number of training datasets. To train the model, Makoto spent about three months taking 7,000 pictures of cucumbers sorted by his mother, but it’s probably not enough.
“When I did a validation with the test images, the recognition accuracy exceeded 95%. But if you apply the system with real use cases, the accuracy drops down to about 70%. I suspect the neural network model has the issue of “overfitting” (the phenomenon in neural network where the model is trained to fit only to the small training dataset) because of the insufficient number of training images.”
The second challenge of deep learning is that it consumes a lot of computing power. The current sorter uses a typical Windows desktop PC to train the neural network model. Although it converts the cucumber image into 80 x 80 pixel low-resolution images, it still takes two to three days to complete training the model with 7,000 images.[…]