Detecting Distraction of drivers using Convolutional Neural Network
2018 Mar 01Conclusion: Deep learning using Convolutional Neural Networks [3] has become a hot area in Machine Learning research, and it has been extensively used in image classification, voice recognition, etc. In this paper, we use Deep Convolutional Networks for detecting distracted drivers and also identifying the cause of their distraction using the VGG16 [18] and VGG19 [18] model. The above results suggest that the methods discussed in this work can be used to develop a system using which distraction while driving can be detected among drivers. The model proposed can automatically identify any of the mentioned 10 classes of distraction and identify not only basic distraction but also their cause of distraction. With an accuracy of more than 99%, the mentioned system was shown to be efficient and workable. The proposed system can be a part of some Driver State Monitoring System which will effectively monitor the state of the driver while he is driving. Driver state monitoring has been becoming increasingly popular these days and many automobile giants have started adopting such systems as a methodology to prevent accidents. These systems, when installed inside vehicles will raise warnings whenever the driver gets distracted, thus trying to prevent any accidents due to distraction from the driver. Also in this work a significant amount of training time has been shown to be reduced. When pre-trained weights from ImageNet [4] were not used, the training time increased by around 50 times for both VGG16 [18] and VGG19 [18]. A graphical representation of time elapsed is depicted in Fig. 15. This drastic reduction in training time was achieved without diminishing the accuracy of our classification models. In future work as an extension to this work, more categories of distraction can be brought in. Even considering certain specific scenarios, which were not targeted in the present work, such as detecting drowsiness among drivers may also provide an opportunity to widen the scale of the work and build a more efficient system.