Erros em Mineração de Dados - Predição de Terremotos Através de Manchas Solares
2012 Apr 06
Um importante artigo de Cristian Mesiano aborda um problema muito recorrente na literatura de Mineração de Dados que é a não observância de aspectos básicos em relação aos dados a serem minerados; e valores de julgamento sobre a base a ser minerada. Ele elenca 4 aspectos que levam um projeto de mineração de dados a falha que são 1) Confiança em demasia na base de dados, 2) Formulação da amostra de dados para análise, 3) Dependência dos resultados do Trainning Set, e 4) Explicação de fenômenos na base de dados através de algumas regressões.
O post é bem curto, mas vale a pena a discussão e a reflexão.