Hibridização de modelos de Machine Learning
2017 Jan 11Para quem ainda tem dúvidas que em breve termos modelos de Machine Learning em nossos dispositivos móveis para identificar diversos comportamentos como andar, estar movimento em um veículo automotor, ou mesmo em situações de buffer (i.e. filas, ou outras situações que estamos parados) esse paper mostra um ótimo caminho de implementação.
Conclusions: In this paper, we propose a novel hybrid incremental (HI) method for activity recognition. Traditionally, activity recognition models have been trained on either impersonal or personal datasets. Our HI method effectively combines the advantages of these two approaches. After learning a model on an impersonal dataset in servers, the mobile devices can apply incremental learning on the model using personal data. We focus on logistic regression due to its several benefits, including its small model size that saves bandwidth, good performance in activity recognition, and easy incremental update. We address two important problems that are likely to arise in practical implementations of this incremental learning task. The first problem is associated with user diversity, making it very difficult to tune the learning-rate for each user. The second issue is related to personal data being so imbalanced at times that it may spoil the impersonal model. To overcome those problems, we applied an adaptive learning rate and a cost-sensitive technique. Finally, experimental results are used to validate our solutions.