Uma explicação sobre as Deep Neural Decision Forests
2015 Dec 26Muito do hype que está sendo feito sobre a Deep Learning se dá através de problemas de computação visual.
A ideia principal é que no final da camada de ativação de uma rede neural (que pode ser deep ou não) haja um direcionamento do output (ou do objeto a ser predito) para um determinado lado da árvore.
Isso não só abre um espaço gigante para problemas de multi-classificação, mas também uma possibilidade de tratar modelos com um grau de latência maior (i.e. que não precisem de atualizações constantes) com uma forma mais robusta de decisão ao longo de toda a cadeia de predição.